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Abstract
Objectives—A single nucleotide polymorphism at the CACNA1C gene (rs1006737) has been
reported in genome-wide association studies to be associated with bipolar disorder (BD) with
genome-wide significance. However, the neural system effects of CACNA1C that mediate the
association are not known. In this study, we assessed associations between rs1006737 variation
and both morphology and functional connectivity within a corticolimbic frontotemporal neural
system implicated in BD.

Methods—A total of 55 European Americans were divided into two groups: a GG group
homozygous for the 'G' allele (n = 30) and carriers of the high risk A allele ('A-carrier' group, AA/
AG genotypes; n = 25). The subjects participated in both high-resolution structural magnetic
resonance imaging (MRI) scans and functional MRI scans during emotional face-processing.
Voxel-based morphometry and functional connectivity analyses were performed.

Results—Compared to the GG group, the A-carrier group showed significantly increased gray
matter volume and reduced functional connectivity within a corticolimbic frontotemporal neural
system (p < 0.05, corrected).

Conclusion—The findings support effects of the rs1006737 variation on the frontotemporal
neural system implicated in BD, both in gray matter morphology and functional connectivity. This
suggests that influence of CACNA1C variation on corticolimbic structure and function may be a
mechanism contributing to the neural circuitry of BD.
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The single nucleotide polymorphism (SNP) at the CACNA1C gene locus, rs1006737 (G to
high risk A allele) remains one of the most compelling susceptibility loci for bipolar
disorder (BD), demonstrated in independent genome-wide association studies to be
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associated with BD with genome-wide significance (1, 2). The neural system effects of
CACNA1C that mediate the association are not known. Here, we assessed associations
between rs1006737 and both morphology and functional connectivity within a corticolimbic
frontotemporal neural system implicated in BD.

Converging evidence supports the involvement of morphological and functional
abnormalities within a ventral prefrontal cortex (VPFC)-amygdala neural system in BD (3–
16). Recent observations, using structural or functional neuroimaging approaches, suggest
the presence of both morphological and functional connectivity abnormalities in the
frontotemporal system in BD, implicating mechanisms that may contribute to the
development of both the structural and functional system disturbances (3, 5).

The CACNA1C gene is implicated in the development and plasticity of frontotemporal
structure and function (17). The gene codes for the major L-type voltage-dependent calcium
channel, CAv1.2 (alpha-1C subunit), which regulates activity-dependent influx of calcium.
This in turn modulates calcium-dependent genes including BDNF (brain-derived
neurotrophic factor) and BCL2 (B-cell lymphoma 2), the protein products of which have
been demonstrated to have neurotrophic and neuroprotective effects in corticolimbic
frontotemporal structures; they have also been implicated in BD and its treatment (18). This
suggests mechanisms through which the CACNA1C gene may influence both morphology
and function within the frontotemporal system.

In healthy individuals, associations between allelic variation at rs1006737 and gray matter
(GM) morphology have been reported for total GM (19), although there is a report of no
difference (20), and a recent study demonstrated increases in amygdala volume (25).
Functional neuroimaging studies specifically examining the amygdala (21, 22),
hippocampus or prefrontal cortex (PFC) (23, 24) have detected rs1006737 associations with
responses within these regions. However, these studies did not examine the functional
relationships between these regions.

We investigated rs1006737 genetic association with both regional GM volumes and
amygdala-associated functional connectivity during emotional processing in healthy
individuals. We hypothesized that the rs1006737 variation would influence both
morphology and functional connectivity within the VPFC-amygdala neural system.

Methods
The genotypes of the SNP (rs1006737) were determined by standard Taqman methods.
Subjects included 55 European Americans divided into two groups: a GG group
homozygous for the 'G' allele (n = 30, mean age = 32.5 ± SD 13.4 years, 60% females) and
an 'A-carrier' group (AA/AG genotypes) (n = 25, mean age = 28.8 ± SD 10.2 years, 48%
females). Genotype frequencies were consistent with Hardy-Weinberg equilibrium
expectations.

The subjects were recruited from the community and were without a DSM-IV Axis I
Disorder themselves, confirmed by the Structured Clinical Interview for DSM-IV Axis I
Disorders Version 2.0 (26), or in their first-degree family members, assessed with family
history screen for epidemiologic studies (27). No subject was taking medications with
potential central nervous system effects or had a history of a medical or neurological
disorder, or head trauma with loss of consciousness over five minutes. Subjects did not use
substances the week prior to scanning and urine toxicology screens on the day of scanning
were negative. The exception was tobacco that could be used until the evening prior to
scanning (five subjects were smokers at the time of study). After a complete description of
the study, written informed consent was obtained from all participants in accordance with
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the human investigation committees of the Yale School of Medicine and VA Connecticut
Department of Veterans Affairs, New Haven, CT, USA.

Both high resolution structural magnetic resonance imaging (MRI) and functional MRI
(fMRI) during emotional face-processing were performed in the same scanning session for
each subject with a 3-Tesla Siemens Trio MR scanner (Siemens, Erlangen, Germany). A
three-dimensional Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)
T1-weighted sequence was used to acquire sagittal images with parameters TR = 1500 ms,
TE = 2.83 ms, FOV = 256×256 mm, matrix = 256× 256, slice thickness =1.0 mm without
gap, 160 slices, 2 averages. fMRI data were acquired with a single-shot echo planar imaging
(EPI) sequence in alignment with the anterior commissure-posterior commissure plane with
the parameters TR = 2000 ms, TE = 25 ms, FOV = 240× 240mm2, matrix = 64× 64, and 32
three-mm slices without gap. During the fMRI runs, an event-related emotional face task
was completed by each participant. Participants viewed faces from the Ekman series
depicting fearful, happy or neutral expressions and were instructed to press a button to make
a male-female determination, as described previously (3, 28).

The structural and functional MRI data were processed and analyzed with Statistical
Parametric Mapping (SPM5) (http://www.fil.ion.ucl.ac.uk/spm), by previously described
methods (3, 5, 29). Briefly, the SPM5 segmentation function was used for structural data
processing. Structural images were segmented, spatially normalized and smoothed by an 8-
mm full width at half maximum (FWHM) Gaussian kernel. fMRI data were realigned,
spatially normalized and smoothed by an 8-mm FWHM. The amygdala seed region of
interest (ROI) was defined with the WFU Pick Atlas Tool
(http://www.fmri.wfubmc.edu/download.htm). For each subject, a mean time series for the
amygdala seed ROI was calculated by averaging the time series for all voxels within the
amygdala ROI. Correlational analyses were then performed between the amygdala time
series and the time series for each brain voxel (30, 31), resulting in a correlation map for
each subject that contained the correlation coefficient for each voxel with that of the
amygdala ROI. For further statistical analysis, the correlation coefficients were transformed
to Z-values using Fisher r-to-z transformation (32).

Whole brain voxel-based two-sample t-tests were used to compare group differences in GM
volume and functional connectivity (correlation coefficients) from an amygdala ROI during
fear, happy and neutral face-processing. Consistent with our previous study (3), findings
were considered significant for p < 0.005 (uncorrected) and for clusters > 640 mm3.
Analyses were also performed with small volume correction (SVC) for multiple
comparisons (p < 0.05, corrected) to further confirm the findings for the hypothesized
frontotemporal regions. Functional connectivity data were also inspected for survival for
Bonferroni correction for study of three types of face processing which required a p-value of
0.017.

Results
The GG and A-carrier groups did not differ significantly in age or sex (all p > 0.2).
Compared with GG subjects, A-carriers had increased GM in bilateral ventral, rostral and
dorsolateral PFC, anterior cingulate and temporal cortices, insular, parietal and occipital
cortices (Fig. 1). The findings in the bilateral ventral, rostral and dorsolateral PFC, and
anterior cingulate and temporal cortices remained significant with SVC. A-carriers showed
functional connectivity decreases from amygdala to VPFC during fear and happy conditions
(Fig. 1). Functional connectivity decreases were also observed in parietal cortex during
happy face-processing. The VPFC findings remained significant with SVC and Bonferroni
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adjustment for multiple testing (all p < 0.017). There were 5 subjects with current nicotine
use. The results remained significant if the analyses were performed without these subjects.

Discussion
CACNA1C rs1006737 was associated with both frontotemporal gray matter morphology and
functional connectivity implicated in BD, suggesting that influence of CACNA1C variation
on corticolimbic structure and function may be a mechanism contributing to the neural
circuitry of the disorder.

The findings are partially consistent with previous neuroimaging studies of effects of this
SNP. The GM increases detected herein are consistent with a previous report of larger total
GM (19), and suggest that these may have derived particularly from frontotemporal
differences. However, increases in volume specifically in amygdala were not detected as in a
previous study that utilized region-of-interest methods (25). Although previous functional
connectivity findings were not reported for rs1006737, previous findings of activation
differences within mesial temporal and frontal regions (21–24) could result from
frontotemporal dysconnectivity observed.

A causal relationship between the increased frontotemporal volumes and decreased
functional connectivity cannot be concluded from this study. Possibilities include
abnormalities in morphology, such as could result from impaired pruning or abnormal cell
type distribution, which could disrupt functional connections. Alternatively, abnormal
functional connections could disrupt morphological development. However, it is also
possible that volume increases represent a compensatory effect in healthy participants who
carry risk allele.

A recent demonstration that this SNP is associated with changes in PFC CACNA1C
expression (23) suggests that the neural effects of the SNP may be attributable to alterations
in gene expression. Effects detected may derive from some other variant in linkage
disequilibrium with this SNP; further studies of CACNA1C are needed to identify the
underlying functional variants. The relative developmental timing of, and interactions
between, the structural and functional effects cannot be determined from this study. Future
studies are needed to address these issues and to directly assess effects within individuals
with BD.
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Fig. 1.
Increased gray matter volume (left) and decreased functional connectivity to amygdala
(middle: fear; right: happy) in rs1006737 A-carriers (p < 0.005, cluster > 640mm3). The
color bar represents the range of t-values. Montreal Neurological Institute z-plane = −14mm.
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